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ABSTRACT: Tubulin is a target for anticancer therapy. Chalcones are antimitotic compounds that 

inhibit the polymerization of tubulin by binding to colchicine site. Thiazole is a heterocycle with 

anticancer properties. Studies in silico conducted show that thiazolic chalcones show no mass effect, 

and ligand-receptor energy is low. From 20 thiazole chalcones, four compounds show good binding 

ability. Results were compared with 31 α-methyl chalcone taken from literature. The specificity of 

thiazole chalcones is superior. 
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1.INTRODUCTION 

Microtubules are vital cytoscheletic filaments of great importance in mitosis and cell division 

processes, being an important therapeutic target for anticancer therapy [1]. They are involved in a 

series of cellular processes, including motility, cell signaling, cell shape maintenance, intracellular 

proliferation, and transport [2,3]. The essential component of microtubules is tubulin [4]. The 

dynamics of assembling and disassembly processes of microtubules is a vital target to identify new 
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anticancer agents [5]. Tubulin polymerization takes place through a nucleation elongation 

mechanism, which is completed by reversible, covalent addition of tubulin dimers. At microtubule 

level, active compounds bind to one of three main binding domains of paclitaxel, vinca alkaloids, 

and colchicine class [6,7]. Tubulin ligands are compounds that inhibit the formation of the spindle 

(e.g., colchicines, vinblastine, vincristine) or compounds that inhibit spindle formed (e.g., paclitaxel, 

docetaxel) [4]. Inhibition of tubulin polymerization or interference with microtubule disassembly 

results in a cell cycle arrest and induces apoptosis [1]. Antivascular effects of anti-tubulin 

compounds result from the role of tubulin and microtubules in determining the elongation form of 

vascular endothelial cells. Cell microtubule network, a major part of cytoskeleton, has a significant 

role in maintaining cell shape, particularly in neovascularization. Endothelial cells of immature 

vasculature have less developed cytoskeleton actin, which is the reason why they are more sensitive 

to effects of antitubulinic agents [8].  Clinical use of these compounds is limited by various aspects 

such as increased toxicity, resistance to therapy, numerous adverse effects, low oral solubility, and 

bioavailability, and complex synthesis [9,10]. An essential feature of anticancer therapy is the 

selective action of biologically active agents on malignant cells. Many therapeutic agents act on 

both malignant and normal cells. In case of cancer cells, abnormal proliferation, ability to form 

metastasis, and the need for apoptosis provide a continuing challenge for identifying new therapeutic 

agents [4]. Chalcones are flavonoids in which two aromatics units are joined by an α, β-unsaturated 

carbonyl system (1,3-diphenyl-2-propen-1-one) [11]. E configuration is more thermodynamically 

stable [12]. They are usually synthesized by Claisen-Schmidt condensation reaction of 

acetophenones with arylaldehydes in acidic or basic catalysis [13,14]. Due to interconversion of 

chalcones in presence of acids and bases, they are important ligands [15]. Natural and synthetic 

chalcones have anti-inflammatory, antidiabetic, antiviral, anti-Alzheimer, antimicrobial, anti-

fungal, antioxidant, gastric protectant, antiangiogenic anticancer activities [3,10,16-23]. Natural 

chalcones are key structures with many biological activities (e.g., curcumin, xanthohumol, 

isoliquiritigenin, flavokawain), which have a particular interest in identification of new anticancer 

agents [24,25].  It is known that some chalcones substituted on aromatic nuclei have cytotoxic and 

antimitotic activity due to their ability to inhibit binding to tubulin and inhibits microtubule 

polymerization. These compounds show this effect due to their reversible binding to the colchicine 

binding site [26,27]. Most natural anti-tubulin chalcones are substituted with hydroxy and methoxy 

groups in different positions of two aromatic residues [28]. Other mechanisms of action of chalcones 

are inhibition of angiogenesis, induction of apoptosis, antiestrogenic activity, and reversal of 

resistance to therapy. Chalcones can act by one or more mechanisms [29]. Millepachine, a chalcone 

with a 2,2-dimethylbenzopyran subunit, exhibits significant cytotoxicity in vitro on various types of 

cancer cells and intense antitumoral activity in vivo [2]. Methoxychalcones are structurally similar 

to combretastatin A4-5 and colchicine due to similar spatial orientation between aldehyde and 
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acetophenone. SAR studies have shown that antitubulinic properties of methoxychalcones are 

dependent on substituents from 2, 4, and 6 positions of aldehyde [29]. Konieczny et al. have 

synthesized oxazole chalcones and have shown that (E) -1- (benzo [d] [1,3] oxathiol-6-yl) -3-

phenylprop-2-en-1-one exhibits high cytotoxicity at nanomolecular level, which can be attributed 

tocombined influence of three structural factors: 1) presence of a heterocyclic ring, 2) the presence 

of a 5-OR residue on acetophenone and 3) substituents from aldehyde [30]. From pentatomic 

heterocycles, thiazole is a crucial part of medical chemistry [31]. This nucleus is an essential 

component of a large number of therapeutic agents with anticancer, anticonvulsant, antifungal, and 

antibacterial properties [32]. Compounds of a series of 4-substituted methoxybenzoyl-aryl-thiazole 

inhibit tubulin polymerization by binding to colchicine site. A phenylaminothiazole derivative of 

series, (2-((4-fluorophenyl)amino) thiazole-4-yl)(3,4,5-trimethoxyphenyl) methanone, inhibits 

tubulin polymerization with an increased potency at nanomolar range [33]. The purpose of the study 

is to analyze binding capacity and specificity for newly synthesized 20 thiazole chalcones and to 

compare obtained results with a similar study conducted by our team for 31 α-methylcalcones taken 

from literature. 

2. MATERIALS AND METHODS 

Tubulin -BAL27862 complex (PDB ID 4O2A) retrieved from literature as a target for thiazole 

chalcones, was modeled computationally using the AMBER 94 force field. A set of 20 thiazole 

chalcones were prepared in silico using the MM2 force field.  

The structure of thiazole chalcone is represented in Table 1. 

 

Table 1: Structure of thiazole chalcones 

 

a-

t 

R1 R2 R3 Name 

a H H OH (E)-1-(4-hydroxyphenyl)-3-(2-phenylthiazol-4-yl)prop-2-en-1- 

one 

b CH3 H OH (E)-1-(4-hydroxyphenyl)-3-(2-(p-tolyl)thiazol-4-yl)prop-2-en-1-

one 

c Cl H OH (E)-3-(2-(4-chlorophenyl)thiazol-4-yl)-1-(4-

hydroxyphenyl)prop-2-en-1-one 
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d OCH3 H OH (E)-1-(4-hydroxyphenyl)-3-(2-(4-methoxyphenyl)thiazol-4-yl) 

prop-2-en-1-one 

e H OH H (E)-1-(2-hydroxyphenyl)-3-(2-phenylthiazol-4-yl)prop-2-en-1- 

one 

f CH3 OH H (E)-1-(2-hydroxyphenyl)-3-(2-(p-tolyl)thiazol-4-yl)prop-2-en-1-

one 

g Cl OH H (E)-3-(2-(4-chlorophenyl)thiazol-4-yl)-1-(2-

hydroxyphenyl)prop-2-en-1-one 

h OCH3 OH H (E)-1-(2-hydroxyphenyl)-3-(2-(4-methoxyphenyl)thiazol-4-yl) 

prop-2-en-1-one 

i H H OCH3 (E)-1-(4-methoxyphenyl)-3-(2-phenylthiazol-4-yl)prop-2-en-1- 

one 

j CH3 H OCH3 (E)-1-(4-methoxyphenyl)-3-(2-(p-tolyl)thiazol-4-yl)prop-2-en-1-

one 

k Cl H OCH3 (E)-3-(2-(4-chlorophenyl)thiazol-4-yl)-1-(4-methoxyphenyl) 

prop-2-en-1-one 

l OCH3 H OCH3 (E)-1-(4-methoxyphenyl)-3-(2-(4-methoxyphenyl)thiazol-4-yl) 

prop-2-en-1-one 

m H OCH3 OCH3 (E)-1-(2,4-dimethoxyphenyl)-3-(2-phenylthiazol-4-yl)prop-2-en-

1-one 

n CH3 OCH3 OCH3 (E)-1-(2,4-dimethoxyphenyl)-3-(2-(p-tolyl)thiazol-4-yl) prop-2-

en-1-one 

o Cl OCH3 OCH3 (E)-3-(2-(4-chlorophenyl)thiazol-4-yl)-1-(2,4-

dimethoxyphenyl)prop-2-en-1-one 

p OCH3 OCH3 OCH3 (E)-1-(2,4-dimethoxyphenyl)-3-(2-(4-methoxyphenyl)thiazol-4-

yl)prop-2-en-1-one 

q H OCH3 H (E)-1-(2-methoxyphenyl)-3-(2-phenylthiazol-4-yl)prop-2-en-1- 

one 

r CH3 OCH3 H (E)-1-(2-methoxyphenyl)-3-(2-(p-tolyl)thiazol-4-yl)prop-2-en-1-

one 

s Cl OCH3 H (E)-3-(2-(4-chlorophenyl)thiazol-4-yl)-1-(2-methoxyphenyl) 

prop-2-en-1-one 

t OCH3 OCH3 H (E)-1-(2-methoxyphenyl)-3-(2-(4-methoxyphenyl)thiazol-4-yl) 

prop-2-en-1-one 
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Ligands were docked against tubulin (4O2A) using AutoDock software [34]. Binding sites were 

retrieved from literature and using a molecular surface (Van der Waals algorithm). The number of 

cavities was set to 4. Binding energies were computed. The sum of total energy was computed. Four 

cavities were chosen to study the most promising compounds in terms of the energy of binding.  

Results 

Cavities obtained were as follow : Cavity A (1561.09 x 15.93 y44.26, z9.85), cavity B (974.336 x 

17.73, y 67.99, z84.49), cavity C (508.928 x 13.20,y 21.08, z -20.90), Cavity D (318.976x 14.06,y 

75.62, z44.71).  Docking energyes (total energy) for each ligand are represented in Table 2. 

Table 2. Binding energies of ligands for distinct binding sites (A, B, C, D) and some of 

binding sites energys or each distinct ligands (A+B+C+D) 

Compound  Cavity A   Cavity B  Cavity C Cavity D A+B+C+D 

a -122.538 -112.603 -116.404 -111.906 -463.45 

b -125.021 -114.318 -122.429 -115.966 -477.734 

c -121.209 -111.676 -111.778 -106.828 -451.491 

d -135.398 -119.32 -129.342 -100.999 -485.059 

e -123.046 -108.734 -125.897 -106.944 -464.621 

f -110.075 -112.003 -116.77 -106.607 -445.455 

g -111.484 -118.583 -114.06 -118.031 -462.158 

h -127.953 -116.833 -126.016 -116.786 -487.588 

i -122.691 -110.671 -110.893 -109.293 -453.548 

j -124.807 -126.97 -125.208 -118.908 -495.893 

k -130.008 -122.334 -122.11 -109.739 -484.191 

l -126.817 -112.493 -134.354 -125.45 -499.114 

m -131.795 -96.1689 -147.198 -112.146 -487.3079 

n -135.802 -123.936 -123.468 -119.002 -502.208 

o -133.552 -127.615 -125.324 -107.911 -494.402 

p -128.727 -113.641 -131.508 -128.933 -502.809 

q -96.1527 -100.039 -119.993 -104.429 -420.6137 

r -108.45 -116.133 -129.423 -99.2839 -453.2899 

s -123.262 -109.968 -138.559 -107.608 -479.397 

t -122.81 -120.501 -140.429 -102.452 -486.192 
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Figure 2: Receptor-ligands total energy (kcal/mol) is represented. The energy has some fluctuations 

for four binding sites (cavity 1 to 4). Also, the lowest energies are observed in the case of binding 

site C and higher values for binding site B. In some cases, there are some overlap regions with 

slightly similar values for all four binding sites (cavities).  
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Figure 3: Ligand interactions with tubulin binding sites. 

Ligand 3n interacts with tubulin by a side chain acceptor (Cys A12) and a side chain donor (Ser 

A140) (Fig. 3a).  Ligand 3o interacts with tubulin binding sites by two methyl groups exposed to 

solvent a heterocyclic and a halogen atom (Cl) expose to solvent, respectively. (Fig. 3b). Ligand 3t 

interacts with tubulin binding sites by to oxygen atoms that form a backbone acceptor bound with 

Thr A145, and Gly A146, some ligand exposer to solvent is also involved (Fig. 3c). Ligand 3p 

interacts with tubulin by side-chain acceptor bound between heterocyclic sulfur and Gln A11; three 

methyl groups, one heterocyclic nitrogen, and a keto group are exposed to the solvent (Fig. 3d). 

3. RESULTS AND DISCUSSION 

The affinity of a ligand to a receptor depends mainly on their ability to form a ligand-receptor 

complex. Complex formation is an active process involving numerous intermolecular interactions 

that stabilize and destabilize the complex formation process [35]. Interactions of proteins with other 

molecules are essential for defining their functionality. Such interactions are involved in all 

processes in biological systems, but also in external modulation of proteins by external agents (e.g., 

drugs) [36]. Identifying new molecules that bind strongly and specifically to molecular targets is an 

essential goal for many areas of molecular science [37]. Rational evaluation of new medicinal agents 

is facilitated by understanding how small molecules interact with macromolecular targets [38]. In 

silico studies are used as pre-selective elements aimed at accelerating identification processes of 

new drugs by reducing the number of ligands that can be synthesized and analyzed for their 

effectiveness and mode of action [39]. Analysis of the formation of ligand-receptor complexes is a 

preliminary stage particularly important for studies [40]. Identification of binding receptor proteins 

for ligands indicates valuable information for signal transduction and drug action [41]. Biological 

activities of chalcones are attributed to α,β-unsaturated ketone subunit. Study of these compounds 

is due to facile synthesis, simple chemical architecture and possibility of these to be precursors to 
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numerous biologically active molecules. One of the most proposed mechanisms of anticancer 

activity for these compounds is the inhibition of tubulin polymerization by binding to cholchicine 

site [42]. Due to potential anticancer activities, identification of new chalcones has been much 

studied. Most of these natural compounds with anticancer properties are substituted with electron 

donor groups (hydroxy or/and methoxy) in different positions of the base structure [43]. Edwards 

has demonstrated that the presence of a subunit of trimethoxyphenyl in chalcone is responsible for 

irreversible inhibition of tubulin. This is due to interaction with the rest of cysteine from tubulin, 

which binds to a Michael-type addition [44]. Polymethoxylated chalcones on aromatic subunits 

show activity on human leukemic cell lines K562 at nanomolar concentrations. Action is due to 

inhibition of mitosis and inhibition of tubulin polymerization. The ability to block cells in the G2/M 

phase of cell cycle is correlated with property to inhibit tubulin polymerization [45]. On the other 

hand, 4-amino-5-benzoyl-2-(4-methoxyphenylamino)thiazole exhibits cytotoxic properties on 

different cell lines. Effects are related to blocking mitosis and disrupting the division spindle of 

mitotic cells. It also inhibits the assembly of microtubular proteins by binding of colchicine site to 

tubulin [46]. 

Results obtained show that receptor-ligands energy differs for the four binding sites (Fig.2) 

 

Figure 4: Correlation between molecular mass and total energy 

Figure 4 shows that thiazole chalcone has no mass effect, as ligand - mass and energy show no 

correlation (r2=0.0081)  
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Figure 5: Energies of 20 thiazole chalcones (orange) compared to 31 α-methylcalcones (blue) 

Results for 20 thiazoles chalcones analyzed and previously synthesized by our team were compared 

with a study we previously conducted for 31α-methylcalcones with anticancer potential taken from 

literature (Fig. 5). It is noted that both thiazole and α-methylcalcone are devoid of specificity. In the 

case of thiazole chalcones, specificity is better, which is an essential advantage compared to the 

other series analyzed. Four thiazole compounds have the best binding capacity (n,o,p, and t). Results 

show that substitution with methoxy groups on thiazole aldehyde and acetophenone is favorable for 

binding ability. For methylcalcone, the best binding capacity presents compound with a hydroxy 
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group in position 4 of acetophenone and rest of dimethylamine in  para position of aldehyde [47, 

48]. 

4. CONCLUSION 

Interactions with tubulin for 20 thiazoles previously obtained by our team were analyzed. Chalcones 

have no mass effect, and ligand-receptor energy is low. Substitution with methoxy groups is 

favorable for the binding affinity of thiazole chalcones. The predicted specificity of analyzed 

compounds is low. Compared to 31 α-methyl chalcone previously studied, thiazole chalcones show 

lower ligand-receptor energies and better specificity. 
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